부등식 $$ |x| +|y| \leq 1 $$의 영역을 $D$라 하자. 점 $P$, $Q$가 영역 $D$ 위를 움직일 때, $\overrightarrow{OR} = \overrightarrow{OP}-\overrightarrow{OQ}$를 만족하는 점 $R$의 자취의 영역을 $E$라 하자. (1) 영역 $D$, $E$를 각각 그리시오. (2) 실수 $a$, $b$에 대해, 부등식 $$|x-a| +|y-b| \leq 1$$의 영역을 $F$라 하자. 점 $S$, $T$가 영역 $F$ 위를 움직일 때, $\overrightarrow{OU}=\overrightarrow{OS}-\overrightarrow{OT}$를 만족하는 점 $U$의 자취의 영역을 $G$라 하자. 이때, $G$와 $E$가 일치함을 보이시오. ..