곡선 y=log(1+cosx)(0≤x≤π2) 의 길이를 구하여라. 생각해보기) 곡선의 길이를 구하는 공식은 모두 알고 있을 것이다. 문제는 피적분함수를 간단한 형태로 변형하는 것인데, 이번 문제에서 사용한 반각공식, 부분분수는 아주 많이 사용되는 테크닉이니 반드시 잘 익혀둬야한다. 풀이) f(x)=log(1+cosx)에 대한 곡선의 길이는 ∫π/20√1+(f′(x))2dx 이다. 먼저 피적분함수를 간단히 해보자. $$\begin{align} &\sqrt{1+(f'(x))^2} \\ &=\sqrt{1+(\cfrac{-\sin x}{1+ \cos x})^2} \\&= \cfrac{\sqrt{2+2\c..