후플 Math

  • 홈
  • 태그
  • 방명록

곡선의 길이 1

교토대 2021-4(이과)

곡선 $y=\log(1+\cos x) \quad (0 \leq x \leq \cfrac{\pi}{2})$ 의 길이를 구하여라. 생각해보기) 곡선의 길이를 구하는 공식은 모두 알고 있을 것이다. 문제는 피적분함수를 간단한 형태로 변형하는 것인데, 이번 문제에서 사용한 반각공식, 부분분수는 아주 많이 사용되는 테크닉이니 반드시 잘 익혀둬야한다. 풀이) $f(x) =\log(1+\cos x)$에 대한 곡선의 길이는 $$\int_0^{\pi/2} \sqrt{1+(f'(x))^2}dx$$ 이다. 먼저 피적분함수를 간단히 해보자. $$\begin{align} &\sqrt{1+(f'(x))^2} \\ &=\sqrt{1+(\cfrac{-\sin x}{1+ \cos x})^2} \\&= \cfrac{\sqrt{2+2\c..

본고사 2021.05.30
1
더보기

공지사항

  • 1년반만에...
  • 모바일은 가로로
  • 스도쿠 포스팅 .. ?
  • 10개의 포스팅 달성!
  • 그래프나 도형 작업에 관하여...
프로필사진

일본 본고사 수학 문제 소개 및 풀이 스도쿠 소개 및 풀이 블로그

  • 분류 전체보기
    • 본고사
    • 스도쿠

인기글

최근글

최근댓글

Tag

미분, 증감표, 확률, 동경대, 공간도형, 도쿄대 수학, 본고사, 공간좌표, 쿄토대 수학, 교토대 수학, 도쿄대, 동경대 수학, 경우의 수, 정수론, 최솟값, 부등식의 영역, 적분, 정적분, 오사카대 수학, 자취의 방정식,

Calendar

«   2025/06   »
일 월 화 수 목 금 토
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

방문자수Total

  • Today :
  • Yesterday :
반응형

티스토리툴바