후플 Math

  • 홈
  • 태그
  • 방명록

최대최소 1

도쿄대 2019-1(문과) (이과2)

좌표평면 위의 네 점 $O(0,0)$, $A(1,0)$, $B(1,1)$, $C(0,1)$에 대해 세 점 $P(p,0)$, $Q(0,q)$, $R(r,1)$이 각각 선분 $OA$, $OC$, $BC$ 위에 있다. $\triangle OPQ$, $\triangle PQR$이 모두 넓이가 $\cfrac{1}{3}$인 삼각형일 때, 다음 물음에 답하여라. (1) $q, r$을 $p$로 나타내고, $p$, $q$, $r$의 범위를 구하여라. (2) $\cfrac{CR}{OQ}$의 최댓값과 최솟값을 구하여라. 생각해보기 좌표평면 위의 주어진 점들이 모두 좌표로 표현되어 있으므로, 넓이에 대한 식을 세우는 것이 아주 간단하다. $\triangle PQR$의 넓이의 경우에도 본문에서 처럼 구하지 않더라도, 소위 말하..

본고사 2021.09.26
1
더보기

공지사항

  • 1년반만에...
  • 모바일은 가로로
  • 스도쿠 포스팅 .. ?
  • 10개의 포스팅 달성!
  • 그래프나 도형 작업에 관하여...
프로필사진

일본 본고사 수학 문제 소개 및 풀이 스도쿠 소개 및 풀이 블로그

  • 분류 전체보기
    • 본고사
    • 스도쿠

인기글

최근글

최근댓글

Tag

확률, 도쿄대 수학, 정적분, 본고사, 경우의 수, 동경대, 교토대 수학, 동경대 수학, 미분, 증감표, 자취의 방정식, 도쿄대, 부등식의 영역, 쿄토대 수학, 공간좌표, 공간도형, 정수론, 오사카대 수학, 적분, 최솟값,

Calendar

«   2025/07   »
일 월 화 수 목 금 토
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :
반응형

티스토리툴바