복소수 3

도쿄대 2019-6(이과)

복소수 $\alpha$, $\beta$, $\gamma$, $\delta$와 실수 $a, b$가 다음의 세 조건을 만족하면서 움직인다. 조건 1 : $\alpha$, $\beta$, $\gamma$, $\delta$는 서로 다르다. 조건 2 : $\alpha$, $\beta$, $\gamma$, $\delta$는 4차 방정식 $z^4-2z^3-2az+b=0$의 근이다. 조건 3 : $\alpha \beta + \gamma \delta$의 실수부는 0이고, 허수부는 0이 아니다. (1) $\alpha$, $\beta$, $\gamma$, $\delta$ 중 2개는 실수이고, 나머지 2개는 서로 켤레복소수임을 보이시오. (2) $b$를 $a$로 나타내시오. (3) $\alpha +\beta$가 취할 수 있는..

본고사 2022.02.01

교토대 2021-3(이과)

무한급수 $$\sum_{n=0}^{\infty}\left(\cfrac{1}{2}\right)^n\cos \cfrac{n\pi}{6}$$ 를 계산하여라. 생각해보기) 그냥 $\cos$의 12주기를 이용해서 풀려고 하는순간 문제가 심각해지기 시작한다. 사실 이 문제를 보자마자 복소수의 실수부분 + 드 무아브르 정리가 한 번에 떠오르기란 쉽지 않은 것 같다. 이번 기회에 다시 한 번 잘 알아놓도록 하자! 풀이) 무한급수의 부분합을 $S_n =\displaystyle\sum_{k=0}^n \left( \cfrac{1}{2}\right)^k \cos \cfrac{k\pi}{6}$이라 하고 극한값을 구하자. 또, $z = \cfrac{1}{2}\left(\cos \cfrac{\pi}{6}+i\sin\cfrac{\p..

본고사 2021.05.30
1