복소평면 3

도쿄대 2019-6(이과)

복소수 $\alpha$, $\beta$, $\gamma$, $\delta$와 실수 $a, b$가 다음의 세 조건을 만족하면서 움직인다. 조건 1 : $\alpha$, $\beta$, $\gamma$, $\delta$는 서로 다르다. 조건 2 : $\alpha$, $\beta$, $\gamma$, $\delta$는 4차 방정식 $z^4-2z^3-2az+b=0$의 근이다. 조건 3 : $\alpha \beta + \gamma \delta$의 실수부는 0이고, 허수부는 0이 아니다. (1) $\alpha$, $\beta$, $\gamma$, $\delta$ 중 2개는 실수이고, 나머지 2개는 서로 켤레복소수임을 보이시오. (2) $b$를 $a$로 나타내시오. (3) $\alpha +\beta$가 취할 수 있는..

본고사 2022.02.01

교토대 2020-1(이과)

실수 $a, b$와 $z$에 대한 다음의 방정식 $$z^3 +3az^2 +bz +1 =0 \qquad (\star)$$ 의 서로 다른 세 근이 복소평면 상에서 한 변의 길이가 $\sqrt 3 a$인 정삼각형을 이룬다. 이때, $a, b$와 $(\star)$의 세 근을 모두 구하시오. 생각해보기 고등수학 (상)의 내용으로부터 $(\star)$는 실수 계수의 3차 방정식이기 때문에 반드시 실근이 존재한다. 그리고 나머지 두 근은 문제의 조건을 부터 켤레복소수일 수 밖에 없다. 따라서 처음 세 근을 $\alpha , \beta , \gamma$가 아닌 $\alpha , \beta , \bar{\beta}$로 두고 시작할 수 있다. 풀이 $(\star)$의 세 근을 $\alpha$, $\beta$, $\bar{..

본고사 2021.08.02
1