(i) 양의 정수 $k$에 대해, $A_k$를 다음 정적분의 값으로 정의하자. $$A_k =\int^{\sqrt{(k+1)\pi}}_{\sqrt{k\pi}}|\sin(x^2)|dx$$ 이때, 다음 부등식이 성립함을 보이시오. $$\cfrac{1}{\sqrt{(k+1)\pi}} \leq A_k \leq \cfrac{1}{\sqrt{k\pi}}$$ (ii) 양의 정수 $n$에 대해, $B_n$을 다음 정적분의 값으로 정의하자. $$B_n=\cfrac{1}{\sqrt n}\int^{\sqrt{2n\pi}}_{\sqrt{n\pi}}|\sin(x^2)|dx$$ 이때, $\lim\limits_{n \to \infty}B_n$을 구하시오. 생각해보기 (i)은 먼저 적절한 치환적분을 통해 주어진 정적분의 형태를 바꿔야..