세 변의 길이의 합이 2인 삼각형 $ABC$에 대해 변 $BC$의 길이를 $a$, 변 $CA$의 길이를 $b$라 하자. 삼각형 $ABC$를 변 $BC$를 축으로하여 1회전 시킨 입체의 부피를 $V$라 할 때, 다음 물음에 답하시오. (1) $a$를 고정하고 $b$를 변화시킬 때, $V$가 최대가 되는 순간은 삼각형 $ABC$가 밑변을 $BC$로 하는 이등변삼각형일 때임을 보이시오. (2) $a$, $b$를 동시에 변화시킬 때, $V$의 최댓값과 그 때의 $a$, $b$를 각각 구하시오. 생각해보기 삼각형이 나오는 기본 기하 문제에서는 반드시 삼각형의 결정조건을 짚고 넘어가야 한다. 삼각형의 세 변의 길이를 $a$, $b$, $c$라 할 때, 삼각형의 결정조건은 $$a