이차함수 3

교토대 2019-2(문과)

실수 $a$와 양의 정수 $b$에 대하여 함수 $f(x)=x^2 +2(ax+b|x|)$의 최솟값 $m$을 구하여라. 그리고 $a$의 값이 변할 때, $a$를 $x$축, $m$을 $y$축으로 하는 그래프를 그리시오. 생각해보기 고1 수학에 해당하는 이차함수의 최솟값에 관한 문제지만, 문자가 많이 등장해서 쉽지 않다. 다행히 $b$는 양의 고정된 상수이다. 절댓값이 있기 때문에 $x$의 범위를 나누는 것 까진 좋은데, 각 경우에 대해서 $a,b$의 관계를 고려해야 하는 것이 관건이다. 풀이 $x \geq 0 $ 일 때 $$f(x) = x^2 +2(ax+bx)=(x+a+b)^2 -(a+b)^2$$ 의 꼭짓점의 $x$ 좌표는 $-a-b$이고, 이것이 $x \geq 0$의 범위에 들어갈 조건은 $-a-b \geq..

본고사 2022.05.16

교토대 2020-2(문과)

$x$에 대한 2차 함수 중 $y=x^2$과 2점에서 '직교' 하는 함수를 모두 구하시오. 여기서 2차 함수가 직교한다는 말은 두 교점에서의 접선이 직교한다는 의미이다. 생각해보기 일반화시키는 문제로 낯설긴하지만, 직교한다는 맥락에서 사용할 수 있는 것은 기울기의 곱이 -1이라는 것 정도 뿐이므로 그 사실을 이용해 차근차근 조건들을 정리해보면 해결할 수 있는 문제이다. 풀이 $y = ax^2 +bx+c$가 $y=x^2$과 직교한다고 하자.$(a \neq 0)$ 이때, 두 함수의 교점의 $x$좌표를 $\alpha , \beta$라 하자. 즉 $\alpha , \beta$는 $$ax^2 +bx+c=x^2$$의 서로 다른 두 실근이므로, $a \neq 1$이고 $b^2-4(a-1)c>0$이 성립한다. 두 교점..

본고사 2021.07.31
1