도쿄대 2020-2(문과)
좌표평면 위에 8개의 직선 $$x = a \quad ( a = 1, 2, 3, 4),$$ $$y = b \quad ( b = 1, 2, 3, 4)$$ 과 16개의 점 $$(a,b) \quad (a=1, 2, 3, 4, b=1, 2, 3, 4)$$ 이 있다. 이 중에서 각 조건을 만족하는 서로 다른 5개의 점을 고르는 방법을 구하시오. (1) 8개의 직선 중에서 선택된 점을 하나도 가지지 않는 직선이 딱 2개 존재한다. (2) 8개의 직선 모두 적어도 하나의 선택된 점을 포함한다. 생각해보기) 개인적으로 경우의 수 문제는 수학이라기 보다 퍼즐에 가깝다고 보는데, 어떻게든 공식을 쓰려고 혈안이 되지말고 꼼꼼히 잘 세는 것에만 충실하면 된다고 생각한다. 당연히 어려운 문제일수록 한 방에 세어서 답을 구하는 문..