후플 Math

  • 홈
  • 태그
  • 방명록

치환적분 1

도쿄대 2019-1(이과)

다음의 정적분을 계산하시오. $$\int ^1 _0 \left( x^2 +\cfrac{x}{\sqrt{1+x^2}}\right)\left(1+\cfrac{x}{(1+x^2)\sqrt{1+x^2}}\right)dx$$ 생각해보기 어짜피 전개를 하지 않고는 다음 단계로 나아갈 수 없다. 전개 후에는 각 항 별로 따로 적분할 수 있다. 물론 적절히 치환적분을 사용해야 되지만, 그 방법이 전형적이다. 풀이 $$\begin{align}&\int ^1 _0 \left( x^2 +\cfrac{x}{\sqrt{1+x^2}}\right)\left(1+\cfrac{x}{(1+x^2)\sqrt{1+x^2}}\right)dx\\=& \int ^1 _0 \left(x^2 + \cfrac{x^3}{(1+x^2)\sqrt{1+x^..

본고사 2021.12.02
1
더보기

공지사항

  • 1년반만에...
  • 모바일은 가로로
  • 스도쿠 포스팅 .. ?
  • 10개의 포스팅 달성!
  • 그래프나 도형 작업에 관하여...
프로필사진

일본 본고사 수학 문제 소개 및 풀이 스도쿠 소개 및 풀이 블로그

  • 분류 전체보기
    • 본고사
    • 스도쿠

인기글

최근글

최근댓글

Tag

정적분, 오사카대 수학, 동경대 수학, 도쿄대 수학, 최솟값, 본고사, 정수론, 경우의 수, 적분, 증감표, 교토대 수학, 도쿄대, 공간도형, 쿄토대 수학, 확률, 부등식의 영역, 미분, 공간좌표, 동경대, 자취의 방정식,

Calendar

«   2025/05   »
일 월 화 수 목 금 토
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

방문자수Total

  • Today :
  • Yesterday :
반응형

티스토리툴바