증감표 8

도쿄대 2023-2(문과)

좌표평면 위의 곡선 $y=3x^2-4x$를 $C$, 직선 $y=2x$를 $l$이라 하자. 실수 $t$에 대해, 포물선 $C$ 위의 점 $P(t,3t^2-4t)$에서 직선 $l$까지의 거리를 $f(t)$라 할 때, 다음 물음에 답하시오. (i) 실수 $a$의 범위가 $-1 \leq a \leq 2$일 때, 다음 정적분을 구하시오. $$ g(A)= \int^a_{-1}f(t)dt$$ (ii) 실수 $a$의 범위가 $0 \leq a \leq 2$일 때, $g(a)-f(a)$의 최댓값과 최솟값을 구하시오. 생각해보기 '거리'와 같은 물리량은 항상 양수라는 사실을 인지하고 있어야합니다. 그에 따라 미지수의 범위를 잘 나눠주기만 한다면 크게 어려운 문항은 아닙니다. 풀이 (i) 점 $P$에서 직선 $ l : 2x-..

본고사 2023.12.26

도쿄대 2019-1(문과) (이과2)

좌표평면 위의 네 점 $O(0,0)$, $A(1,0)$, $B(1,1)$, $C(0,1)$에 대해 세 점 $P(p,0)$, $Q(0,q)$, $R(r,1)$이 각각 선분 $OA$, $OC$, $BC$ 위에 있다. $\triangle OPQ$, $\triangle PQR$이 모두 넓이가 $\cfrac{1}{3}$인 삼각형일 때, 다음 물음에 답하여라. (1) $q, r$을 $p$로 나타내고, $p$, $q$, $r$의 범위를 구하여라. (2) $\cfrac{CR}{OQ}$의 최댓값과 최솟값을 구하여라. 생각해보기 좌표평면 위의 주어진 점들이 모두 좌표로 표현되어 있으므로, 넓이에 대한 식을 세우는 것이 아주 간단하다. $\triangle PQR$의 넓이의 경우에도 본문에서 처럼 구하지 않더라도, 소위 말하..

본고사 2021.09.26

오사카대 2020-1(이과)

함수 $f(x)=(x+1)^{\frac{1}{x+1}}(x \geq 0)$에 대한 다음 물음에 답하시오. (1) $f(x)$의 최댓값을 구하시오. (2) $\displaystyle\lim_{x\to \infty}f(x), \displaystyle\lim_{x\to \infty}f'(x)$을 각각 구하시오. 필요하다면,$\displaystyle\lim_{x\to\infty}\frac{\log x}{x}=0$라는 사실을 이용해도 된다. (3) $y=f(x)$의 그래프의 개형을 그리시오. 생각해보기 미분을 통해 함수의 증감을 조사하고, 그래프의 개형을 그리는 전형적인 기본문제이다. 풀이 (1) $x \geq 0$ 에서 $f(x)=(x+1)^{\frac{1}{x+1}}>0$이므로, 양변에 로그를 취할 수 있다...

본고사 2021.08.15

오사카대 2021-1(이과)

$ab0)$에 그은 두 접선의 교점을 각각 $Q\left(s,\cfrac{1}{s}\right),R\left(t,\cfrac{1}{t}\right)$이라고 하자. $(s0, y>0$ 부분 위를 움직일 때, $\cfrac{t}{s}$의 최솟값과 그 때의 $a,b$의 값을 구하여라. 생각해보기) 2) $\cfrac{t}{s}$를 정리 할 때, 루트 부분 전체를 치환하는 과정이 가장 중요하다고 생각한다. 자칫 처음 형태에서 분모의 유리화를 하는 식으로 진행해버리면, 나눗셈의 미분법을 증감표를 작성할 수 있을진 몰라도 계산이 만만치 않을 것 같다. (필자는 해보지 않아서 잘 모르겠음) 조금 복잡하다싶은 미분을 해야될 경우엔 적절히 치환해서 처리하는 습관을 들이면 좋을 것 같다. ( 물론 치환시에 범위 체크는 필..

본고사 2021.06.06

교토대 2021-2(이과)

$y=\cfrac{1}{2}(x^2+1)$ 위의 한 점 $P$에서의 접선이 $x$축과 만나는 점을 $Q$라고 할 때, 선분 $PQ$ 길이의 최솟값을 구하여라. 생각해보기) 간단한 풀이가 따로 있는 문제가 아니다. 계산 실수에 유의하며 미분을 잘 하는 수 밖에 없다. 굳이 팁이라면 선분 $PQ$의 길이를 점과 점 사이의 거리를 이용해서 구하기보다, 기울기를 이용한 닮음으로 구하면 조금 간단해진다 정도랄까? 풀이) 주어진 함수의 그래프가 $y$축 대칭이므로, 우리는 일반성을 잃지않고 $P$의 $x$좌표 $p$를 양수라고 생각해도 무방하다. $y'=x$이므로 $P$에서의 접선의 방정식은 $y=p(x-p)+\cfrac{1}{2}(p^2+1)=px-\cfrac{p^2}{2}+{1}{2}$이고, $Q$의 $x$좌표..

본고사 2021.05.30
1