전체 글 76

교토대 2021-5(문과)

$p$가 소수면 $p^4+14$는 소수가 아님을 보이시오. 생각해보기) 우리나라의 일반 수험생들 입장에서는 잘 보지못한 생소한 문제일 것 이다. '정수의 분류' 라고 해서 모든 정수를 특정 수로 나눈 나머지를 기준으로 나눌 수 있다. 대표적인것이 짝수(2로 나눈 나머지 0), 홀수(2로 나눈 나머지 1)로의 분류이고, 이 문제에서는 3으로 나눈 나머지가 0, 1, 2인 세 그룹으로 소수를 분류하여 문제를 쉽게 풀어냈다. (물론 3으로 나눈 나머지가 0인 그룹은 3의 배수로 소수가 아니기 때문에 본 풀이에서 다루지 않았다.) 풀이) 소수 $p=3$이면 $p^4+14=95$는 소수가 아니다. 이제 $p \neq 3$ 인 경우에 $p=3q+r$ 로 둘 수 있다. ($r$= 1 or 2) $p^2 = (3q+r..

본고사 2021.05.29

교토대 2021-4(문과)

공간 위의 8점 $$O(0,0,0),A(1,0,0),B(1,2,0),C(0,2,0)$$ $$D(0,0,3),E(1,0,3),F(1,2,3),G(0,2,3)$$ 으로 이루어진 직육면체 $OABC-DEFG$에서 점 $O$, 점 $F$, 선분 $AE$ 위의 점 $P$, 선분 $CG$위의 점 $Q$가 한 평면 위에 있다. 이 때, 사각형 $OPFQ$의 넓이가 최소가 되는 $P,Q$와 그 때의 넓이 를 구하여라. 생각해보기) 공간도형 문제라는 것 자체로 겁 먹을 수 있을 지도 모른다. 하지만, 주어진 점의 좌표를 이용해 구하고자 하는 점 $P, Q$도 좌표를 세워서 접근하면 그리 특별한 문제가 아님을 알 수 있다. 풀이) 점 $P, Q$의 좌표는 각각 $(1, 0, p), (0, 2, q)$라 쓸 수 있다. $(..

본고사 2021.05.28

교토대 2021-3(문과)

2이상의 정수 $n$에 대해, 1부터 $n$까지의 번호가 적힌 $n$개의 상자에 빨간 구슬과 하얀 구슬이 각각 1개씩 들어있다. 이제 $k=1, \cdots, n-1$에 대해 다음 시행 $(\star)$을 실시하자. $(\star)$ 번호 $k$의 상자에서 구슬을 1개 꺼내 번호 $k+1$의 상자에 넣고 잘 섞는다. 마지막으로 번호 $n$의 상자에서 구슬을 1개 꺼내 번호 1의 상자에 넣는다. 이 때 번호 1의 상자에 빨간 구슬 1개와 하얀 구슬 1개가 들어 있을 확률을 구하여라. 생각해보기) $k$번 째 시행 후 $k+1$번째 상자에 있는 구슬은 항상 빨빨흰 or 빨흰흰 이다. 그리고 우리의 목표는 1번 상자에서 뽑은 구슬의 색과 $n$번 상자에서 뽑은 구슬의 색이 같을 확률이다. 항상 목표를 명심한 ..

본고사 2021.05.28

교토대 2021-1(문과)

(1) 6.75를 2진법을 나타내고, 그 수와 $101.0101_{(2)}$의 곱을 2진법, 4진법으로 표현하여라. (2) $OA=3$, $OB=2$, $\angle{AOB}=60^\circ$인 $\triangle OAB$가 있다. $\triangle OAB$의 수심 $H$에 대해, $\overrightarrow{OH}$를 $\overrightarrow{OA}, \overrightarrow{OB}$로 표현하여라. 생각해보기) (1) 사실 이진법 수 끼리의 곱셈도 가능은 하지만, 필연적으로 수의 길이자체가 길어지고 올림을 하는과정에서 실수할 요인이 많다고 생각된다. 우리에게 친숙한 십진법으로 바꾸어서 해결하는게 안전하지 않을까 ? 게다가 정수부분과 분수부분을 나눠서 계산하면 나중에 다시 이진법이나 사진법으..

본고사 2021.05.26

도쿄대 2020-3(문과)

좌표평면 위의 포물선 $y=x^2-2x+4$ 에 대해 $ x \geq 0 $인 부분을 $C$라고 하자. (1) 점 $P$가 $C$위의 동점일 때, 반직선 $OP$가 지나는 영역을 그리시오. (2) 직선 $l : y=ax $에 대해 다음 조건을 만족하는 실수 $a$의 범위를 구하여라. 조건 : $C$위의 점 $A$와 $l$위의 점 $B$와 원점 $O$가 정삼각형을 이루는 경우가 있다. 생각해보기) 정삼각형이 되려면 세 변 혹은 세 각이 같음을 보여야한다. 그런데 지금 우리가 가진 $B$라는 점은 직선 $y=ax$위의 점이기 때문에 길이 문제로 부터 자유롭다! ( 원하는길이를 선택할 수 있음) 그러니까 두 반직선 $OA$, $OB$가 이루는 각도만 $60^{\circ}$가 되도록 문제를 세팅해서 풀면 된다...

본고사 2021.05.18

도쿄대 2020-2(문과)

좌표평면 위에 8개의 직선 $$x = a \quad ( a = 1, 2, 3, 4),$$ $$y = b \quad ( b = 1, 2, 3, 4)$$ 과 16개의 점 $$(a,b) \quad (a=1, 2, 3, 4, b=1, 2, 3, 4)$$ 이 있다. 이 중에서 각 조건을 만족하는 서로 다른 5개의 점을 고르는 방법을 구하시오. (1) 8개의 직선 중에서 선택된 점을 하나도 가지지 않는 직선이 딱 2개 존재한다. (2) 8개의 직선 모두 적어도 하나의 선택된 점을 포함한다. 생각해보기) 개인적으로 경우의 수 문제는 수학이라기 보다 퍼즐에 가깝다고 보는데, 어떻게든 공식을 쓰려고 혈안이 되지말고 꼼꼼히 잘 세는 것에만 충실하면 된다고 생각한다. 당연히 어려운 문제일수록 한 방에 세어서 답을 구하는 문..

본고사 2021.05.17

도쿄대 2020-1(문과)

좌표평면 위에 곡선 $$C :y=x^3-3ax^2+b \quad (a>0,b>0)$$ 가 아래의 두 조건을 만족한다. 조건 1 : $C$는 $x$축에 접한다. 조건 2 : $x$축과 $C$로 둘러싸인 영역 안에 $x,y$좌표가 모두 정수인 점은 1개 뿐이다. (경계선 위의 점은 제외) 이 때, $b$를 $a$로 나타내고, $a$의 범위를 구하여라. 생각해보기) 어렵게 나오는 경우도 종종 있는 '격자점' 문제이다. 하지만 이 문제는 조건을 만족하는 단 하나의 점이 $(0,1)$일 수 밖에 없다는 사실이 다소 쉽게 밝혀지는 문제이다. 풀이) 먼저 $f(x)$를 미분하고 증감표를 그려서 그래프의 개형을 알아보자. $f'(x)=3x^2-6ax=3x(x-2a)$에서 극댓값 $f(0)=b$ 가 양수이므로 $f(x)..

본고사 2021.05.16

도쿄대 2021-6(이과)

항등식 $x^4+bx+c = (x^2 +px+q)(x^2-px+r)$에 대한 다음 물음에 답하여라. (1) $p \neq 0$ 일 때, $q,r$ 을 $p,b$로 나타내시오. (2) $p \neq 0$와 상수 $a$에 대해 $b,c$가 $$ b=(a^2 +1)(a+2), \quad c=- (a+\cfrac{3}{4})(a^2+1)$$ 를 만족할 때, $$\{p^2 -(a^2+1)\}\{p^4+f(a)p^2+g(a)\}=0$$ 을 만족하는 두 다항식 $f(t),g(t)$를 구하시오. (3) 정수 $a$에 대한 4차식 $$x^4+(a^2+1)(a+2)x-(a+\cfrac{3}{4})(a^2+1)$$ 이 유리수 계수의 두 이차식의 곱으로 인수분해될 때의 $a$를 모두 구하시오. 생각해보기) 지금 우리나라의 교..

본고사 2021.05.15
1 ··· 4 5 6 7 8