본고사 69

도쿄대 2020-1(이과)

실수 $a,b,c$에 대한 연립부등식 $$\left\{\begin{align}&ax^2+bx+c>0\\&bx^2+cx+a>0\\&cx^2+ax+b>0\end{align}\right.$$ 의 해가 $x>p$이다. 1) $a,b,c$ 는 모두 0 이상임을 보여라. 2) $a,b,c$ 중 적어도 하나는 0임을 보여라. 3) $p=0$ 임을 보여라. 생각해보기) 언뜻 보기에 막연해 보일수 있는 연립 부등식이지만, 부분문제를 잘 따라가면서 $a, b, c$의 범위를 점차 제한해 가다보면 부등식이 간단해짐을 알 수 있다. 그리고 부등식문제를 푸는 과정에서 부등식을 이차함수의 그래프로서 생각하면 좀 더 수월할 것 같다. 풀이) 1) $x > p$ 라는 연립 부등식의 해는 세 부등식이 모두 성립하는 공통 범위이다. 만..

본고사 2021.06.16

오사카대 2021-3(이과)

자연수 $n$과 $t \geq 1$인 실수 $t$에 대해 다음 물음에 답하시오. 1) $x \geq t$ 일 때 다음 부등식이 성립함을 보이시오. $$-\cfrac{(x-t)^2}{2} \leq \log x - \log t - \cfrac{1}{t}(x-t) \leq 0$$ 2) 다음 부등식이 성립함을 보여라. $$- \cfrac{1}{6n^3} \leq \int_{t}^{t+ \frac{1}{n}}\log x dx - \cfrac{1}{n}\log t - \cfrac{1}{2tn^2}\leq 0$$ 3)$$ a_n= \sum_{k=0}^{n-1}\log \left( 1+\cfrac{k}{n}\right)$$ 일 때, $ \displaystyle{\lim_{n \to \infty}}(a_n -pn)=q$..

본고사 2021.06.11

오사카대 2021-1(이과)

$ab0)$에 그은 두 접선의 교점을 각각 $Q\left(s,\cfrac{1}{s}\right),R\left(t,\cfrac{1}{t}\right)$이라고 하자. $(s0, y>0$ 부분 위를 움직일 때, $\cfrac{t}{s}$의 최솟값과 그 때의 $a,b$의 값을 구하여라. 생각해보기) 2) $\cfrac{t}{s}$를 정리 할 때, 루트 부분 전체를 치환하는 과정이 가장 중요하다고 생각한다. 자칫 처음 형태에서 분모의 유리화를 하는 식으로 진행해버리면, 나눗셈의 미분법을 증감표를 작성할 수 있을진 몰라도 계산이 만만치 않을 것 같다. (필자는 해보지 않아서 잘 모르겠음) 조금 복잡하다싶은 미분을 해야될 경우엔 적절히 치환해서 처리하는 습관을 들이면 좋을 것 같다. ( 물론 치환시에 범위 체크는 필..

본고사 2021.06.06

오사카대 2021-1(문과)

실수 $a$와 포물선 $C:y=x^2$에 대해 다음 물음에 답하여라. 1) 점 $A(a,-1)$을 지나는 $C$의 접선은 2개 있음을 보여라. 2) 점 $A(a,-1)$에서의 접선과 $C$의 접점을 각각 $P,Q$라 하자. 직선 $PQ$의 방정식은 $y=2ax+1$임을 보여라. 3) 점 $A(a,-1)$와 직선 $y=2ax+1$ 사이의 거리를 $L$이라고 할 때, $L$의 최솟값을 구하여라. 생각해보기) 기본에 충실하면 해결할 수 있는 문제들이다. 2)의 경우 $P,Q$의 $x$좌표를 미지수로 잡고 근과 계수를 적용시키는 연습이 필요하다. 3) 역시 $L$이나 $L^2$를 힘들게 미분해서 답을 찾을 수도 있지만, 최솟값문제는 미분 이전에 산술-기하평균을 적용시킬 수 있는지 먼저 체크 하는 습관을 들이자...

본고사 2021.06.04

교토대 2021-6(이과)

1) 2이상의 정수 $n$에 대해 $3^n-2^n$이 소수이면 $n$도 소수임을 보여라. 2) 1이상의 상수 $a$에 대해 미분 가능한 함수 $f(x)$가 $f(a)=af(1)$을 만족하면, $y=f(x)$는 원점을 지나는 접선을 가짐을 보여라. 생각해보기) 1) 이 문제와 같이 주어진 명제를 그 자체로 증명하기 힘들 땐, 동치인 대우명제를 생각해보면 된다. 그리고 많은 경우에 문제가 쉬워지는걸 볼 수 있을 것이다. 2) 뭔가 평균값정리를 쓴다는 것 까진 감이 왔다면 반은 해결한 것이다. 문제는 평균값정리를 적용할 함수 $g(x)$를 찾는 것인데, 결국 이런 류의 문제를 많이 풀어보고 주어진 조건의 모양을 잘 살펴볼 수 밖에 없다. 풀이) 1) 대우 명제 $n$이 소수가 아니면 $3^n-2^n$이 소수가..

본고사 2021.06.01

교토대 2021-5(이과)

좌표평면 위에 두 점 $B(-\sqrt3, -1), C(\sqrt3,-1)$와 $y$좌표가 양수고 $\angle BAC= \cfrac{\pi}{3}$를 만족하는 점 $A$가 있다. 1) $\triangle ABC$의 외심의 좌표를 구하여라. 2) 점 $A$가 조건을 만족하면서 움직일 때, 수심의 자취의 방정식을 구하여라. 생각해보기) 1) 두 점 $B,C$가 $y$축에 대해 대칭이기 때문에 외심의 정의로 부터 외심이 $y$축 위에 있음을 알 수 있다. 2) 구하고자 하는 자취인 수심의 좌표를 $(X,Y)$로 두고 $X,Y$에 대한 관계식을 찾는 전형적인 문제이다. 또는 중학교 수준의 도형지식만으로도 해결할 수 있으니 관심있으시면 해보시길 바란다. (지름에 대한 원주각이 만들어 내는 직각과 수선이 만들어 ..

본고사 2021.05.31

교토대 2021-4(이과)

곡선 $y=\log(1+\cos x) \quad (0 \leq x \leq \cfrac{\pi}{2})$ 의 길이를 구하여라. 생각해보기) 곡선의 길이를 구하는 공식은 모두 알고 있을 것이다. 문제는 피적분함수를 간단한 형태로 변형하는 것인데, 이번 문제에서 사용한 반각공식, 부분분수는 아주 많이 사용되는 테크닉이니 반드시 잘 익혀둬야한다. 풀이) $f(x) =\log(1+\cos x)$에 대한 곡선의 길이는 $$\int_0^{\pi/2} \sqrt{1+(f'(x))^2}dx$$ 이다. 먼저 피적분함수를 간단히 해보자. $$\begin{align} &\sqrt{1+(f'(x))^2} \\ &=\sqrt{1+(\cfrac{-\sin x}{1+ \cos x})^2} \\&= \cfrac{\sqrt{2+2\c..

본고사 2021.05.30
1 2 3 4 5 6 7